Probabilistic Principal Component Analysis
نویسندگان
چکیده
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.
منابع مشابه
مدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملProbabilistic Analysis of Kernel Principal Components
This paper presents a probabilistic analysis of kernel principal components by unifying the theory of probabilistic principal component analysis and kernel principal component analysis. It is shown that, while the kernel component enhances the nonlinear modeling power, the probabilistic structure offers (i) a mixture model for nonlinear data structure containing nonlinear sub-structures, and (i...
متن کاملHidden Markov Bayesian Principal Component Analysis Hidden Markov Bayesian Principal Component Analysis
Probabilistic Principal Component Analysis is a reformulation of the common multivariate analysis technique known as Principal Component Analysis. It employs a latent variable model framework similar to factor analysis allowing to establish a maximum likelihood solution for the parameters that comprise the model. One of the main assumptions of Probabilistic Principal Component Analysis is that ...
متن کاملProbabilistic analysis of kernel principal components: mixture modeling, and classification
This paper presents a probabilistic approach to analyze kernel principal components by naturally combining in one treatment the theory of probabilistic principal component analysis and that of kernel principal component analysis. In this formulation, the kernel component enhances the nonlinear modeling power, while the probabilistic structure offers (i) a mixture model for nonlinear data struct...
متن کاملSparsification of Probabilistic Canonical Correlation Analysis
We have recently developed several ways of performing Canonical Correlation Analysis [1, 5, 7, 4] with probabilistic methods rather than the standard statistical tools. However, the computational demands of training such methods scales with the square of the number of samples, making these methods uncompetitive with e.g. artificial neural network methods [3, 2]. In this paper, we examine a rece...
متن کاملDistributed Probabilistic Learning for Camera Networks
Probabilistic approaches to computer vision typically assume a centralized setting, with the algorithm granted access to all observed data points. However, many problems in wide-area surveillance can benefit from distributed modeling, either because of physical or computations constraints. In this work we present an approach to estimation and learning of generative probabilistic models in a dis...
متن کامل